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What is This Note About?

Terminology: phasor, wave front, wave number,
phase velocity, and group speed

Wave propagation in:
Strings
Bars
Beams
Shafts
Plates

Phase and group velocity
Non-dispersive and dispersive waves

Coincidence frequency



Phasor

Phasor is a rotating vector.

Consider a vector A such that, A=a + bj is a vector with a,
and b as its real and imaginary components.

In exponential form, this vector may be expressed as,

where:
|A| = (a2+ b?)0S
= Tan(b/a)

If this vector is rotating at an angular velocity of w, then
such a vector is called phasor.

Mathematically, this implies multiplication of vector A with
a time-dependent vector e/“t. The product of these two
entities becomes a phasor.

Thus, B= |A]|e® X elwt = |A]el(®+wt)

Such rotating vectors are very frequently used in
wave-mechanics.

The projection of a phasor on real axis represents a
real harmonic function.



Wave-front, and wavenumber

Wave-front is a locus of points in a wave, that have the
same phase.

For 3-D planar waves, these fronts are flat planes, each plane being
parallel to the all other planes.

For 2-D planar waves, these fronts are straight lines, all being
mutually parallel.

For radialy symmetric waves, as in those emitted by monopoles in
3-D space, these fronts may be represented by a series of
concentric spheres.

Lenses and mirrors may be used to transform planar wave
fronts to spherical wave-fronts.

Similarly, lenses and mirrors may also be used to transform
spherical wave fronts to planar wave-fronts.



Wavenumber, Phase Velocity & Group Speed

Wavenumber k, is defined as phase change per unit length.
Since phase changes by 2mt radians over one wavelength,
thus, the per-unit length phase change k is defined as:

k = 2mt/A

In a homogenous 1-D medium, if a point ‘O’ is disturbed
simple harmonically with angular frequency w, then this
disturbance propagates away from the source at a speed
Cpp- If the phase of this disturbance at O is ¢, then the
propagation velocity of phase away from O is also at the
same speed, i.e. c,,. This velocity, c,,, is termed as phase
velocity. The relation between k, and c,, is:

k =2mt/\ = w/cph.

Group speed ¢, of a wave is defined as dw/dk. Knowledge
of ¢, is useful in understanding wave energy flow.



1-D Waves Propagation in Solids

Just as in fluid media, waves can propagate in solid medium

as well. This propagation can be 1-D, 2-D or 3-dimensional
in nature.

Examples of one-dimensional wave propagation in solids
are:

Vibration of a string

Longitudinal wave in 3-D solids
Quasi-longitudinal waves in thin plates
Transverse shear waves in solids
Longitudinal waves in a bar

Torsional waves in a bar

Bending waves in a bar



1-D Waves Propagation in Solids

The governing equations for all these examples of 1-D
waves in solids are given in following table.

c*=T/p,
T = tension in string
p,= string’s linear density

c?= E(1-v)/[p(1+v)(1-2v)]
Displacementin  E = Young’s modulus

x-direction v = Poisson’s ratio
p = material density

c?=E/[p(1-v?)]
E = Young’s modulus

String’s normal

. 2 2 = 2\A?2 2
String Oty OxE = T/cel 08/ ot displacement

Longitudinal waves

2 2 — 2\A2 2
in a 3-D solid 9*W/ox* = (1/c)9°W/ot

Quasi-longitudinal Displacement in

02W/ax? = (1/c?)0*W/at?

wave in thin plate x-direction . :
p = material density
Transverse shear Transverse ¢*=G/p
. 02W/ox? = (1/c?)o?W/ot? displacementin G = Shear modulus
waves solids . . :
y-direction p = material density

Continued on next slide.




1-D Waves Propagation in Solids

c’=E/p

Displacement in
P E = Young’s modulus

Longitudinal 32W/dx2 = (1/c2)02W/or

waves in bar x-direction . :
p = material density
Torsion waves ¢*=G/p
" 3 bar 02Y/0x? = (1/c?)o2W/at? Twist angle G = Shear modulus
p = material density
c? = [Elw?/p,]W/4)
Bending waves Transverse E = Young’s modulus
. 8 0*W/ax* = [p,/(El)]o*W/at? displacementin /= Bending MOI
in a bar ) i , .
y-direction p,= bar’s linear density

w = Angular frequency

It is seen that the governing equation for all the cases, except
that for bending waves in a bar, are similar.

For all these cases, phase velocity is independent of angular
frequency, w.



Dispersive and Non-Dispersive Waves

However, for the case of bending waves in a bar, phase
velocity is directly proportional to the square root of angular
frequency.

This dependence of phase velocity on angular frequency is
attributable to the fact that the governing equation is a 4t"
order PDE in x, while those for all the remaining cases are 2"
order PDEs in x.

Waves with varying phase velocities with respect to angular
frequencies are called dispersive waves. A “group” of these
waves with different frequencies, may start travelling at the
same time in a medium, but due to their different phase
velocities, “disperse” as they travel along the medium.

Waves with same phase velocities with respect to angular
frequencies are called non-dispersive waves.



Coincidence

The plot of wave number (on vertical axis) vis-a-vis frequency
is called a dispersion curve.

For non-dispersive waves, this curve is a straight line. For
such waves, phase speed and group speed are identical. For
dispersive waves, this curve is not a straight line.

Bending waves in plates are dispersive waves. Hence, at
certain frequency, the phase speed of these waves
“coincides” with phase speed of sound in fluid (air). This
frequency is called coincidence frequency.

On a dispersion plot, coincidence frequency corresponds to
the point of intersection of dispersion curve for a bending
wave (in a plate) and dispersion curve for sound (a straight
line).



